Amplitude saturation of MEMS resonators explained by autoparametric resonance
نویسندگان
چکیده
منابع مشابه
Autoparametric resonance of relaxation oscillations
Stable normal mode vibrations in engineering can be undesirable and one of the possibilities for quenching these vibrations is by embedding the oscillator in an autoparametric system by coupling to a damped oscillator. We have the possibility of destabilising the undesirable vibrations by a suitable tuning and choice of coupling parameters. In the case of normal mode vibration derived from a re...
متن کاملEffect of thermoelastic damping in nonlinear beam model of MEMS resonators by differential quadrature method
This paper presents a nonlinear model of a clamped-clamped microbeam actuated by an electrostatic load with stretching and thermoelastic effects. The frequency of free vibration is calculated by discretization based on the Differential Quadrature (DQ) Method. The frequency is a complex value due to the thermoelastic effect that dissipates energy. By separating the real and imaginary parts of fr...
متن کاملResearch Issues in MEMS Resonators
MEMS resonators have started replacing the quartz crystals and SAW resonators in RF transceivers because of their inherent advantages like high quality factor, small size, robustness and easy integrability with supporting electronics. The paper presents the developments that have taken place in MEMS resonators. Some of the issues in the design and development of electrostatically transduced MEM...
متن کاملSuppression of thermoelastic damping in MEMS beam resonators by piezoresistivity
Microelectronic mechanical (MEM) beam resonators with high quality factors are always preferred in practical applications. As one of the damping sources, thermoelastic damping (TED) caused by irreversible heat flows is usually considered as an upper limit of the overall damping effect. A new method is proposed in this work to compensate TED by taking advantage of the piezoresistive effect. Such...
متن کاملSynchronization of MEMS Resonators and Mechanical Neurocomputing
We combine here two well-known and established concepts: microelectromechanical systems (MEMS) and neurocomputing. First, we consider MEMS oscillators having low amplitude activity and we derive a simple mathematical model that describes nonlinear phase-locking dynamics in them. Then, we investigate a theoretical possibility of using MEMS oscillators to build an oscillatory neurocomputer having...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Micromechanics and Microengineering
سال: 2010
ISSN: 0960-1317,1361-6439
DOI: 10.1088/0960-1317/20/10/105012